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ABSTRACT
Let M be a smooth n-dimensional manifold and let T™ be its tangent
bundle. We consider a time periodic Lagrangian of period T,
l% : ™ + R
and we seek T-periodic solutions of the Lagrange equations, which in local

coordinates are

(*) g—-aé (tIQI‘.!) = -g—L. (thJé).‘ 0 i=1...,n.
t 3 q

Our main result states that if the fundamental group of M 1is finite, then
(*) has infinitely many T-periodic solutions, provided that I, satisfies

certain physically reasonable assumptions.
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SIGNIFICANCE AND EXPLANATION
~—> The question of existence and the number of periodic solutions of model
equations for a classical mechanical system is a problem as old as the field
of analytical mechanics itself. The development of the nonlinear functional
analysis has renewed interest in these problems.

In this paper we consider a mechanical system which is constrained to a
compact manifold M. We suppose that the dynamics of the system is described
by a T-periodic Lagrangian v
Lcubt @ TN apprdhnes S

l\,_ : TM + R
vwhich satisfies reasonable physical assumptions. The main result of this
paper is: If the fundamental group of the manifold M is finite, then the

Lagrangian nonlinear system of differential equations which describes the

dynamical system has infinitely many distinct periodic solutions.

The responsibility for the wording and views expressed in this descriptive
sumnmary lies with MRC, and not with the author of this report.




PERIODIC SOLUTIONS OF LAGRANGIAN SYSTEMS ON A COMPACT MANIFOLD
Vieri Benci
INTRODUCTION

The existence and the number of periodic solutions of model equations for a classical
mechanical system is a problem as old as the field of analytical mechanics itself. The
development of the nonlinear functional analysis has renewed interest in these problems (we
refer to [R] for a recent bibliography on the subject).

In this paper we are interested in periodic solutions of prescribed period when the
system is constrained to a compact manifold. This fact allows us to use many tools
developed in the theory of closed geodesics on Riemannian compact manifolds (cf. (K]). We
now describe our results.

Let M be a smooth n-dimensional manifold and let ™ be its tangent bundle. We
consider a time-dependent Lagrangian

Lt : ™ + R
We suppose that I is T-periodic in time and we seek T-periodic solution Y(t) € M of
the corresponding dynamical system. We fix a finite C.-atlan
(0.1)(a) A= (01,0!12_1'...'“ for M
and the corresponding atlas
(0.1)(b) ™A = {10, T4}, .5 fOF™M
So in local coordinates, our dynamical system is described by the following system of

second order differential equations:

L L
.| L o 3 .
(0.2) at 5;: (t,q(t),q(t)) - 341 (t,q(t),q(r)) = 0

for i= 1,...,n and Yy(¢t) e U‘, L= 1,...,N
where
-1 . .
(0.3) Ll(t.q,v) - ‘k . (TOl) (q,v) and (q{(t),q(t)) = (Tol)v .

We shall suppose that T = 1 (if not it is sufficient to rescale the time) and we set

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




1
8 = R/E 80 that we can regard a solution of (0.1) as a function vy : s1 + M. We make

the following assumption on L

(Ly) Lz is twice differentiable for £ = 1,..,,N

There exists a constant c > 0 such that

L
(Ly) (a) ls-& (t,q,v)| € c(1 + |V|2)
Y

a
(b) lﬁ (t,q,v)] < c(1 + |v])
i

a2 2
(Ly) (a) Iaqiaqj Ll(t,q,v)l < c(t + |v©)
32
(b) l——aqjavj Ll(c.q,v)l < (1 + |v])

2
3
(c) '?v:?v; Ll(t,q.v)l <e

for i,y = 1,...,n and ¢ =1,000,N.

(L3} there exists a constant v > 0 such that
2

Xij _avaav L(t,qlv)wivj > V'w'z for Lt = 1,...,N g
i

For example the Lagrangian defined by

L 13 L
Ll(t,q,v) Zijaij(C,q)vivj + Zlbi(t,q)v1 + c(t,q)

L | 2 1 2 £
satisfies (L,), (L,) and (L,) if a, 4o b, c €C(U) and the matrix {aij(t.q)} is
positive infinite for every t e s1 and q € Ul'
We say that a periodic solution of (0.2) is homotopically trivial (resp. nontrivial), *

1
if the map Y : § + M is homotopically trivial (resp. nontrivial).

The main result of this paper is the following one
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0.1 Theorem. Suppose that 1L, satisfies (l-‘) ("2) (l-,)- then

(1) for each conjugacy class of the fundamental group of M there exists at least a !
homotopically nontrivial periodic solution of (0.2)

(11) 4if the fundamental group of M is finite, then there exist infinitely many
homotopically trivial periodic solutions of (0.2).

The result of Theorem (0.1) is optimal as the following example shows. Take
M= s’ = R/%; I.t = (+,*> where <°,*> is the standard Riemanian structure on s'. Then
all the 1-periodic solutions of (0.2) have the form Y(t) = rt (r € X). Since
'1(8‘) = %, this simple example shows that

(1) to each conjugacy class of l1(Hl may correspond only one periodic solution
of (0.2).

(41) if !1(11) is infinite we may not have any homotopically trivial periodic
solution of (0.2).

By Theorem 0.1 the following corollary follows

0.2 Corollary. If M is a Lie

infinitely many periodic solutions.

Proof. Under our assumptions 11(H) is an Abelian group. Then if it is infinite, the
conclusion follows by Theorem 0.1 (1); if it is finite, the conclusion follows from Theorem
0.1 (1i).

We thank E. Fadell and J. Robbin for many useful conversations on this topic.
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1. DESCRIPTION OF THE PUNCTION SPACES USED ‘.
Let M be a smooth compact manifold of dimension W and let
1
S = g = [0,11/{0,1}. Por s @ (1/2,+»] we set

A% = wtis' )

where w'(s',u) denotes the Sobolev space of functions Y @ s1 + M of order 8. 8ince
there exists n' such that M C ﬂ", the easiest way to define vf(s',n) probably is the
following one: ;
Wi = (yews B )iv) e n for every t)

We remark that the above assumption makes sense. In fact since s > 1/2, by the Sobolev
embedding theorem, the function in w'(s',n) are continuous. If s < 1/2 there is not
any reasonable definition (cf. e.g. [A]).

w'(s',u) can also be defined using the atlas (0.1)(a). We say that vy @€ w'(s‘,n) if
for every interval T C s1 such that v(t) € Ui. we have that

Qi-YIT s T * R* is a function in H'(s‘,l?); (01,01) ea

Palais has shown that the two definitions are equivalent (Pa). We will be interested in

the two cases wvhen 8 =1 or s = +», In these cages we set

1
A‘n =W (81 M) = function with “"square integrable derivative"

A.H = w'(s‘,u) - c’(s‘,n) = functions continuous with all their derivatives.
It is well known that A1H is a Hilbert manifold (cf. e.g. [Pa), (K], [A]). We also need
1
to use the space c(s',u) of the continuous functions y : S + M. We shall use the

following notation

m=cs',m
It is well known that AM is a Banach manifold (cf. e.g. [K]). Now consider the tangent
bundle ™ LI M. For s € (1/2,%) and r < s define
A% = (¢ : s' >+ ™ : £ is a vector field
of class W° along a curve Y € A’M}
If we define a map *: T°A% » A% as follows

(FE) (L) = w(E(r)) for a.e. t € s!
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it follows that ({T°A%M,¥,A%M} 1s a (infinite dimensional) vector bundle over A®M (cf.
{X] or [A]l for proofs and details). In particular, for r = 8, we obtain the tangent
bundle of A®M. In this case we shall write simple TA°M. Also we shall use the following
notation

T:A'H - (;)-17 = {E : s‘ + M| £ is a vector of class W along Y}

Tyh'n = (:)-11 = {E : S1 + M| § is a vector of class Ww® along Y}
Similarly we define

™M = (£ : S+ M| £ is & continuous vector field along a curve Y & AM}
T.A.H = {E : S+ M E is a continuous vector field along a curve Y € A.M} s> 1/2

By well known theorems on Sobolev spaces, we have that the embeddings.

TYA1M —_> T:Ain -> TiA‘n are continuous and the first one is also compact (for detail
see o.g. (K] or [A]l). In order to make easier the computation in the following sections
it is useful to introduce a Riemann structure < , > on M. This structure permits to

0.1
define Hilbert structures on TYA M and T;A1M as follows

1

0.1
<€y = { <E(e),ned (a6 EneTAM

1

<€, = [ (<9 E(e),Y n(t)> + <E(t),n(t)>
) t t

1
Yt) lJat Ene 'ryl\ M

Y{t)

where Vt denotes the covariant derivative. We shall use also the following notation

1/2 0.1 - 172 1
IEIo = <E,E>o (E e TYA M) and IEI1 <£,E>1 (E e TYA M)

We also define

e, = [ sup  cicer,Een ]2

for £ € T 'AM
te(0,1) Y

y(t)

1
The above definition allow to define the following distances on A M

’ [
) = min [ 1811 A

dilt1(Y
ges 0

1772

1
aist (v,,Y,) = min [ 1801 &
012" ¥ Ceap o 0

-5~




where B is the set of curves 8(A) of class c' joining M and 12 and

By =g,
It turns out that A‘H is a complete metric space with respect to the distance d‘('.').
Actually it is an infinite dimensional Riemann manifold with respect to the Riemann
structure <-,->1 and the topology induced by this metric is the same given by the
definition (cf. [K] for proofs and details).

We also define for 11,72 e AM

1
atst, (v,,v,) = min [ 18(0)1 A\
1772 gen 0 *

where B = (8 & c'(10,11,A0 : B(O) = v .B(1) = v,}.

2
As expected it turns out that AM is a complete metric space with the distance

dllt.(v ) and the topology given by this metric is the uniform convergence topology.

1772
By virtue of the compactness of the embedding A‘M -—> AM the following result holds

(see (K] for details).

1
Lemma 1.1. If {v } is a sequence {n A M, bounded with respect to the metric a,(*,°),

then it has a subsequence converging in AM.




2. ESTIMATES OF THE ACTION FUNCTIONAL ON A1H

At least formally, the solutions on (0.2) are the critical point of the action
functional
(2.1) £(Y) = ]1 L *vYat

-]
We shall show that the functional (2.1) is a functional of class c2 on A‘H. In this
section we shall prove this fact and we shall give gome estimates to be used later.

In order to carry out this program it is useful to have nice local representations of
the quantity involved by means of the atlas (0.1)(a), (b). In this way it will be possible
to exploit assumptions (L,), (Lz) and (LJ)' For y e A‘n, we divide s! in "intervals®

11,...,Tp (where p depends on Y) such that
Y(t) eU, for t €T L= 1,.00,p

L | 3
where (Ul,bl} is a chart of the atlas (0.1)(a). Then we set

(2.2) q, = ol . Y|t L= 1,000,p »
L
Clearly a, e w‘(tl,n") and
(2.3) ig,t <c
Rt SE

where ¢, is a constant which depends only on the atlas (0.1)(a). Moreover

yit) eTU, for teT

t L and L= 1,...,p 1}

then we set

(ql.él) =T, * i| L =1,.00,p -

T
Clearly we have
. .4
9 " ac Y
and
5 i, e tier, 2
(2.5) q, Y .

1
If te TYA M, we have that

E(e) e TUl for t € Tl and £ = 1,...,p

then we set

(2.5%) (ql,5ql) = T’l LN 3 ¢ for t=1,...p.
L

-7~
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1
By the definition of TYA M we have that

(2.6) sq, e w (1, 1) .

. 2 2
Moreover £ € T U, where T

t denotes the “"double tangent®™ operator. So we can set

o . 2 .
2.7) la,, qu. Qe 8q,) = T 4 ° E|.r
1

Of course q, and él defined by the above formula agree with ql and &l given by

(2.4) and

a

(2.8) cél s

sq e Lz(rl,nP) .

1
Definition 2.1. Given vy e A'M and £ e TyA M, we shall call the functions

q. &l' qu, 6&‘ (defined by (2.2), (2.4), (2.5') and (2.7)) a A-local representation of

Y. ¥, £ and E respectively. Also we shall call the corresponding functions Ll(t,q,v)

for t =1,...,p (given by (0.3)) a A-local representation of L, corresponding to Y.

Using a A~local representation of Y and of lt the functional (2.1) takes the

following form

(2.9) £(y) = E ] Ll(t,ql(\:),él(t))dt
k=171,

Lesma 2.2 let Ll be a function given by (0.3) and set

(2.10) g la) =] L (t,q,@ae
T
2

where 11 is a subinterval of [0,1]. If Ll satisfies (La), {Lg) then gl is a

2 1
functional of class C on W (1x,Rn) with

3L
o L P
(2.11) gi(q)(Gq] = 21 { {5;f (t,q,q)6q + I (t,q,q)8q}at
2 22 22
(2.12) q:(q)Nq] = Zij { {m: Lt(c.q,q)ququ + 2 E;; L(t,q,q)sqisqj
L

2
) o\ pe gw
+ 3v13vj Ll(t,q,q)GqLqu}dt

M i I i T T T




and the following inequalities are satisfied

(2.13) gi(q)[ﬁql < e, (|T | + lql 1 n Y 1&gl
Wt R wit, ,RY
] t
(2.14) q'(q)[6q12 <Cc (It ] + lql2 ) 18q0
* 2t w'ie, B wlie, B

where c, and c, depend only on the constant c appearing in (L,) and lTll is _the

measure of Tl. Moreover if (L3) holds we have

2
(2.15) gp@ e’ > aléq1? - b, + 1g1% 2 Y1’ 2
W' ir, m" wlir, R AT )

where the congtants a and b depend only on the constants ¢ and Vv appearing in L,
and L3.
Proof. Clearly, (2.11) and (2.12) hold formally. Therefore we just have to prove

inequalities (2.13) and (2.14). 1In the following C3s C4se++ will denote suitable

positive constants. By (L,)(a) we have

(2.16) |f R qudt| <ec f (1 + |§|2)|sq|at <
1
s

2
< cllv,l + 1q1° )18qh
w L

2
< c3(|1!| + lqlw1)l6ql 1

w
By (L,)(b) we have
(2.17) II 6q el <e f (1 + 13D 183]ae
l l
!
< c(lrll + Iqt 1)(f |6q|2)1/2 (by Schwartz inequality)
w T

L

1

< e llt,l + 11?1 15q0
w w

-9




By (2.16) and (2.17), (2.13) follows.
By (Lz)(a) we have

(2.18) |I a 6q16q at| < ¢ I o+ 1412 )| &q| 25
j

Ty

2 2
< c(ltl) + Iql ‘)l6ql -
w L

By (Lz)(b) we have

2

(2.19) 2 II a 6q15q atl < 2¢ [ (1 + 1a1)18ql1841at
j

s Ty

< 2chéq _(f 1+ 1anhae)"2.(f I6§l2dt]1/2 (by Schwartz inequality)
L

i Y

Cc,llt, | + 1gl _)etégl _<08ql
et W' L W

1

By (Lz)(c) we have

2
|! ———av 3v. 54,841 < °'6q'w‘
z

By the above inequality, (2.18) and (2.19), (2.14) follows.

By (L3) we have

Y f 3 quﬂqjdt >v { 16412 =
)

= visql?, - 15q02, > visq1?, - 15q0°
1 2 1 -
W L w L

By the above inequality, (2.19) and (2.18) we have

-10~-




(2.20) q:(q)lsq)z > vl6ql2' - I&;lz. - c‘(l‘l"l + iq)
L

. 1)l6qlL.l6ql .

w U]
- c(|1l| + Iql21)|5qlz.
w L

Since

Nic

c‘(ltll + Iqt 1)|6qlL.l6ql . ¢ 29

2
gt v o= ci(ltll +1q0 s’
w W w W L

< 2usqr?, ¢ cgti,l + 1q? yesq?
L 1 -
w W L

2
(We have used the fact that |v, | <« 'Tl' € 1). By the above inequality and (2.20) we get

2

- 2 3 2 2 2
gl(q)IGq] >3 IGqu, =+ cg+ c)(l‘tll + 'q.w1)“qlx,.

By the above inequality, (2.14) follows. O

1
Lemma 2.3. The functional £ defined by (2.1) is a c2-functional on A M. Moreover if

9 &ll. is a local A-repregentation of Y and § we have
(2.21) £ (E] = [,q(q,)(8q,)
(2.22) enE? - I, gi(ql)[&x‘]z
where gl is defined in lemma 2.2
Proof. Let B{(A) (A& (u ~¢e,u+¢€),e>0) be a c'-curve in A'M such that
B(0) = v, % B(A\) = £ and let - qu be a A-local representation of Y anda &.

Then, using (2.9) and lemma 2.2 we get
& esON |, = 1,9 (q,)8q,)
ax |am0 = Ly9ptay)tda,

2
- -
el P ICACRICN

]2

The above formulas prove (2,21) and (2.22), O
In carring out our estimates on the functional f it is useful to make use of the
Riemann structure <,> on M which, as we have seen in Section 1, induces a infinite

1
dimensional Riemann structure <',‘>1 on A M.

-t i~




(2.20) qi(q)[&q]z > visqr® - 18’ - cglltg) + tal 0sqr véqr
w L w L w

2 2
- c(l‘l’l| + Iql 1)I6ql -
L L

Since

Nic

2 1 2 2 2
18q1 + = c (lr,l + Iql ) 18ql
w\ 2v 4 L "1 L.

e, (It 1 + Iql )M8qt _18ql <
4 2 W, L. “1

f |cq|2‘ + cgtln,| + |q|2')|cq|2.
w v L

(we have used the fact that lttlz < l‘l’zl < 1). By the above inequality and (2.20) we get
gt (8q12 > ¥ 18qi2, - (1 4 o ¢ o)iT,| + 1q1 21sqt?
L 2 H1 5 L “1 I..

By the above inequality, (2.14) follows. O

1
Lemma 2.3. The functional ¢ defined by (2.1) is a cz-tunctioml on A M. Moreover if

9y qu is a local A-rapregentation of Y and § we have
(2.21) £ () (€] = [,q7(q,)(8q,]

(2.22) NG 1 qg(ql)KGq,12

where 9, is defined in leswma 2.2

1
Proof. let 8(A) (A€ (u -€,u +¢€),e€>0) be a c'-curve in A'M such that
B(0) = v, %: B(A) = £ and let 9 qu be a A-local representation of Y anda &.

Then, using (2.9) and lemma 2.2 we get :
]

a
I FBON], o = L9)ta,) (8, |

d2 2
el e Iy93ta,) 18q,)

In carring out our estimates on the functional f it is useful to make use of the

on M which, as we have seen in Section 1, induces a infinite

i

i

!

|

The above formulas prove (2.21) and (2.22). O j
!

Riemann structure <,> ;
|

1
dimensional Riemann structure <',->‘ on A M.
|

afly=




Strictly related to <'.'>1, there is the functional (called energy functional)
1 s s
(2.23) B(Y) =5 [ <H.ae
1

Using a A-local representation, (2.23) takes the form
(2.24) Ry =2 E | L.dttad, 4, .6t
2 t=1 1 137437 °277¢2,172,3
[ 2

where q,, él is a A-local represantation of ¥ and {q:j) is the metric tensor in the
local coordinates of the chart {Uz,bl}. B(Y) 1is a particular case of the functional
(2.1) vhen L, * ¥ = <¥,§>. So, by lemma 2.3 it follows that E(Y) is a C>-function of
A

Lesma 2.4. There exist constants a, and b, such that

1
a E(y) - b1 < £(y) <€ 112(7) + b1

Proof. let L, be a local representation of I, given by (0.3). For 2= 1,...,N we

L

have
L L

L 1 L
L,(t,q,v) = L,(t,q,v) + Ix W, (t,quulv, + 3 EU aviavj (t,q,0 v)vi,vj
where 0 @ (0,1).
By the above formula, the compactness of M, and (La) we get
v 2 \) 2
Ll(t,q,v) >~ €y - C2|V| + 3 lvl® > ‘ lvl© - b‘
where €4 © and b, are suitable constants.

If q:j is the metric tensor of <,> 1in the chart Ul. by the above inequality we

1 ¢ - -
Lz(t,q,v) > a; glj(q)vivj 4 ] T,e000p »

where a, is a suitable constant.




The above inequality can be written as follows

1
L\:(E) > 2, <t > - b, for every Eem™

1 .
Taking Y€ A M, £ =Y, integrating by the above inequality we get

. 1 . 1 -
£(y) = [ L (¥(e))ae > 5 ] <¥,¥>at-p, = + BV - b

s1 1 s1 1

The other inequality can be obtained in an analogous way. 8}
The following lemma establishes estimates between intrinsic quantities and the
corresponding quantities given by a A-local representation.

Lemma 2.5. let Y, £, q, 4, 8q., §q as in Definition 2.1. Then there exists a constant

M depending only on A and <¢,*> such that

(2.25) E 1qt? < M(1 '+ E(Y))

=1 "1”1' )

(2.26) T ulEl: L=1,..0,p
L (t,,R)
*
(2.27) § eqt?, > daed -]
=1 w “l’n )

Proof. By (2.3) we have |ql(t)| < <, for every t € Tl. (t=1,...,p). Then

(2.28) at , o

< Je le
L (Tll‘ ) 1

Since the atlas (0.2) is finite there is a constant ¢, such that
. 2 o .
|q‘(t)| < c2qij(q!(t”ql,iql,j L= 1,...,p »
where q: M is the metric tensor.
Then we have

. 2 L, . .
(2.29) E [ 14,1%at < ¢ E | ¢/,lqq, ,4, 9t =
1, L 2 L 3 1399y 3,4

=c, f [ <t, 4> = c,B(Y)
L

=1 1

R iensve-ar e AP e 3 T o Sl s T




By (2.28) and (2.29), (2.25) follows.
Por t @ Tl we have
| 3
<E(t),E(t)> 21, gij(q)ﬁql'l(t)qu’j(e)

then there is a constant Cy such that

A 2 2
o |5ql(t)| € <E(t),E(e)> < caléqz(t)l

By the first of the above inequality (2.26) followss; by the second we get

(2.30) | <E(e),E(e)>ae < c, T, 16q0°
3 ‘g 2 n
L (t,,R)
3
Por t € Tl we have
[ ) 3
(2.31) <E,8> = le glj(q)vtaqlplvthl,j
where Vt denotes the covariant derivative:
o i .
(2.32) Veay =84y o+ Ly Toonkl909, 8,
where - ri hk are the Christoffel sywbols relative to the chart Ul. Then by (2.31) and
,
(2.32) we get

. e . 2 .
<€,8> 2 e, 184,17 - cglq,li8q,]
So integrating we get
: 2
eE)(y) = [ <&, Esac > ¢, §, 18q1 -c. I, ¥8q,1 Iq1
MY e R A T LT
z 3 3
Using (2.25) and (2.26), (2.27) follows. [m]

Lemma 2.6. There are constants a,, b2 such that

" 21 2 _ 2
£ (Y (E)" > a 181, b2(1 + !(Y))IEI'

Proof. Using (2.22) and (2.15) we get

2 2
) {atdqyr | - blIT )+ g7, L P

e er? > n n
=1 W (1z,n ) w (1l,l ) L (T‘,l )

Then by (2.25) and (2.26) we get

-t4=-




2.8 2 2 2
£ (VIEIT > = 1617 = ME(Y)IIEN, - badNs T (11| + 1q,0 )
o ' #5008 t w'(:..d‘)

a 2 _ 2 2
> 150 HI(Y)IEI. + BMIENL(T + M(1 + B(Y)))
“2100] - o e wimonner] ¢ amoe e
The conclusion follows with a, = % and b, = mex(b,1)(M + 2). D

Lewoma 2.7. let 68 : [0,1) » A'M bea curve of class c'. Then

172

q .
(a) ar B(B())) € 2m(B())) IB(X)I1

a4 192 s
() T3 mBON T <o,

1 V2 1
(@) [ mBA) /%ar < 4y where 4, =/ 1B a
° 0

(4) VE(B(0)) - /B(B(1)) < dllt,(’(o).3(1)) < d'

(e) if (Yn} is_a seguence such that R(Y ) is boun en_there is a s
Y, converging in AM.
Proof. (a) Define &8 [0,1]) x s' + A as follows

§(A,t) = (8(M))(e)

Then we have
Logson =24 11 <3 6,3 8>at
ax 24, t 't
1
- [ <¥,3,8,3 $dt (7, denctes the covariant derivative)
0
! 2, 2
< (J «v,0,6,9,3 6>ae) Co(] <a 8,3 8rat) (by the Schwarts inequality)
0 t t ° t

< 218008 a0 2

(b) follows directly by (a).
(c) follows integrating (b)

(d) follows by (bh) and the definition of dllt1(°,')

-18a
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(e) by (3) we get that the sequence (Yn} is bounded in the metric <*,*>.. The
conclusion follows by lessa 1.1. a

Let Yo and Yy e A'n two curves such that
(2.33) d.(Y°¢Y1) <p
wvhere ¢ 1is small enough in order that the Riemann sphere 8 p(x) is geodesically convex
for every x € M. By virtue of the compactness of M and a well known theorem of J.
Whitehead such o exists. et & : (0,1) x 31 + M be a function such that

(a) 68(0,t) = Yo lth §(1,t) = v, (¢)
(2.34) (b) X + §(A,t) is the shortest geodesic joining Yo(t) and Y‘(t)
parametrized with the arc length

By our assumption on p, & 1is well defined. The £+ .tion & defines a C'-curve
83 (0,1] » A‘n in a natural way

(2.35) (B(A))(e) = 8(A,¢)
lewma 2.8. let £ be _the curve defined by (2.35). Then

BN, < (1 + ad))a, for every Ae [0,1)

1
:—x 8(\), d. = d:llt.(Yo,Y,). d’ - g liun‘ax and a, is a constant which

pends only on the Riemann manifold (M,<¢,*>).

rk. In a linear space, where the tangent space can be identified with the space itself

gr) =

i

]

we have B()) = (1 - X)vo + h'. Then |i(m, = Jy, - yol‘ = d’. Lemma 2.8 says that

1
Ii(l)l‘, in our situation, is not equal to dB' but it can be nicely estimated.

Proof. By (2.34)(b) it follows that

(2.36) ¥,3,800,t) = 0 for every t e s'
(2.37) ,8,2,6 = di-t(vo(t).v1(c))2 <d} for every t es'
e have

-16-




(2.30) Lodon, - 22 gan?-
lﬂ(l)l‘

1
_.._!&_d_j {<v.3,8,7.3,8 + ¢3,8,3 6)de =
li(x)l1 a ° 130 DA Y A7

1
1
- | <9, 92 G,ant6> + <

. §,3,6>}dac =
IB(X)I‘ o At A

A%

1
L
e —1 [ 9.7.2.6,9.2 84 by (2.36)
oo, o AeA T e

By a well known formula of Riemannian geometry, if v is any vector field along §, we
have

(2.39) v Vtv = vtv - R (3t6,3x6)v

A P
where R is the Riemann curvature tensor. Moreover since our manifold M is compact,
there exists a constant a; such that

(2.40) ] <R(v1,v2)v3,v‘> < Aolv1l'lv2l-lv3l°lv‘l

vhere v, € ™ and 'vil - <v1,v1>. By (2.38), applying (2.39) with v = 3x6 we get

1

4 .= 1 _
(2.41) 15 1800, ‘—ué(m |‘I, (<9,9,3,8,9,3,8 - R(3,8,2,8)2,8,7,3, 8>}ae|
1
% 2
¢ — [ 13_8112,80°4179,3 814t (by (2.36) and (2.40))
t by 2%
li(m1

2
a d
0 2 1 2 172
< =21 (f 1a 80%ae) 2o ([ 19,0, 80%ae) "
B,

(by (2.37) and the Schwarte inequality)

/2

< .oa::(a(x))' (by the definition of 15(»):1 and E(8))

By the above formula we get

-17-




by
® = - L .
B, li(u)l1 < |£ 155 18O tae] <

2 !
< ayd, (I) E(B(N))

"’ax < lod:ds (by Lemma 2.7(c).)

Then, integrating the above formula in d4du we get
BAN, - 4, < a a2
B(A) 1 8 aod.dB
which proves the lemma. O
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3. THR TOPOLOGY OF A‘H
1
The topology of A M is strictly related to the topology of AM; in fact we have the

following theorem

Theorem 3.1. The embedding
£ A" m
is a homotopy equivalence.
Proof. See [K] Th. 1.2.10., O
For our purposes, by virtue of Theorem 3.1 it is enough to study the topology of AM.

We have the following results of Vigue~Poirrier and Sullivan:

Theorem 3,2. If ¥,(M) = 0 there exists an infinite set of positive integer
QC W
such that
HY(AM) # 0 for every q €Q
where Y (AM) is the cohomology ring with real coefficients.
Proof. If the cohomolgy algebra H*(M) requires at least two generators, then the result
follows from the main theorem of [V.P.S.] on page 637,
If H*(M) has only one generator, the result follows from the Addendum of [V.P.S] on
page 643. 0
By the above theorem and theorem 3.1, the following corollary follows
Corollary 3.3. Under the same assumptions of theorem 3.2
Hq(A‘H) #0 for every q€Q
Now let p > 0 be small enough in order that the Riemann sphere Sp(x) is geodesically
convex for every x € M. We set
(3.1) e ={ve A'mim < e}
The following result holds.
Theorem 3.4. E. is homotopically equivalent to a manifold N of dimension less or equal
to (dim n)(-‘@ + 1),
Proof. The proof is essentially the same of the proof of Theorem 16.2 of Milnor [M].

1
Actually instead of using the manifold A M, he uses the {non-complete) manifold of broken

-19-




geodesics, but its proof can be adapted to our situation without major changes. We shall
give a sketch of it. Let So(x) be the Riemann ball of radius ¢ and center x. By
virtue of the compactness of M and well known theorems, it is possible to choose o

small enough in order that sp(x) is geodesically convex for every x € M. We now set

e - {(vye zc|Y|[t is a geodesic for i = 1,...,N}

1-1+%!
where tL L % and N satisfies £§ <N < Z% + 1. Notice that, by virtue of our

restriction on N, if v € Ec' Y([ti-I'til) is contained in sp(x) for some x € M,
Now we want to show that Ec is a finite dimensional manifold. To do this we set
A= {(x1....,x“) e Hﬂldilt(x1_1,xi) <p 1=1,...,N}

and consider the map

defined as follows

a(x‘,...,xu) = Yy with Y(ti) - xi

This map is obviously continuous since x,_, and x, belong to sp(x) for some x €M
and since sp(x) is geodesically convex, the (unique) geodesic which join x4 and x,
depends continuously on x; and x,,,. Moreover it is invertible, in fact

i - 70 PRPPYS ({38 R

e

[
integer part of a. The next step will be to prove the ic is a deformation retract of

This proves that Ec is a manifold of dimension (aim M)+([=S] + 1) where [a] denotes the

E.. The retraction r : [0, %] xE_* Ec is defined as follows

the unique geodesic joining Y(ti) with Y(t1 + 1) for t e [ti't1 + 1]

r(d,y)(t) =

Y(t) for t e [ti + At ] i=0,.00,N -1,

i+1
If you remember that t1 = %, the above definition makes sense for ) € [0, %]. Clearly
r(0,y) = v and r[%, t) e ;c' Moreover, it is easy to see that r is continuous in
[0. %] x A‘H and it is equal to the identity for vy e ic' This proves the theorem. O
By Theorem 3.4 the following conclusion follows straightforward.

Corollary 3.5. HY(2,) = 0 for k> (dim m[-'r;‘; + 1],

-20-

T ot =T i T g

o




4. THE MAIN RESULTS.

We recall the well known assumption (c) of Palais and Smale (which will call P.S8.)

Definition 4.1. lLet X be a Riemann manifold modelled on an Hilbert space and let
tec (X,R). We say that {X,f} satisfies P.S. if any sequence Y, € X such that
t (Yn) +c and V¢ (Yn) + 0 has a converging subsequence.

The above condition is used to prove the following well known theorem:

Theorem 4.2. let (X,f£} satisfy P.S, and let T be a family of subsets of X such that
(a) A €Tl such that fh is bounded from above.

(b) vaer tIA > const.

(c) if n 4is a deformation of X, (i.e. it is a homeomorphism on X homotopic to

the identity) then A €I if and only if n(A) eT.

Under such assumption

c = inf sup £(Y)
ACM yYea

is well defined and it is a critical value of f.

Our goal is to apply theorem 4.2 to the couple {A‘H,f } where f is defined by
(2.1). The first step is to prove the following lemma.
Lemsa 4.3. (A'M,f} patisfies ».s.
Proof. First of all we remark that V£, given by the formula
<VELY), B>, = £2 (V) LE)
is well defined and continuous by lemma 2.3. Now let {Yn} be a sequence such that

(a) f(Yn) +*c
(4.1)

(b) Ve(y n) +0
By (4.1)(a) and lemma 2.4, it follows that I(Yn) is bounded. So by lemma 2.7(e), we can
consider a subsequence which is a Cauchy sequence in AM. We shall denote this subsequence
1
again with Y . We want to show that (Yn} is a Cauchy sequence in A M. We chose

€ >0 and N 1large enough in order that, for m,n > N we have

~21=




(a) 19¢{y )1 < fe
n 402

(4.2)

/1 € 1 1
(b) 4, (y ,y ) < nin(p, = / 2y )
# n’'m a, azbz(! + 1) 4 azbz

where E = gsup !(Yn); P, a,. a, and b, are the constants appearing in (2.33) and lemmas
néw
1
2,8 and 2.6. Now let B : [0,1] + A'M be a curve defined by (2.35) and (2.34 with
1

B(O) Y and B(1) = Y . Moreover set, as in lemma 2.8 4, = | 180014 ana
0
d' = dist“(Yn,Yn). Clearly we have
IB(X)I' =4,
and by lemma 2.6 we have

. 1 .
(4.2°) ereOn B > 2 agan? - bk + mBou) .
a, 1 2%

So we have

1

2 < f lé(h)lidk (by Schwartz inequality)
0

4.
(4.3) d8

1 2
< {a, =% 280N +ap, (1 + mBOIAA by (4.2'))
0 ar

1

. * 2 2
< a2(|<Vf(Ym).8(0)>| + |<Vf(Ym),B(1)>|) + azbzd. + azbzd' g E(B()A)}Ax

{by an integration in 1)

Also we have
(4.4) a2(|<Vf(Ym),B(0)>l + |<Vf(Ym),B(1)>|) <

< a (IVE' (Y )I-IE(O)I + IVE(Y Y B(NT) <
2 n m

/e 2
< 2a2 . 2:; o (1 + aod')d8 (by (4.2)(a) and lemma 2,8)
< /e . dg (by (4.2)(b))
1 .2
<zdgtce

Also we have
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A
- a.
(4.5)  B(B(A)) = m(Y ) +£ a BB(r)ar

1

ce+2) meen'
0

2Ii(t)ldt (by lemma 2.7(a) and the definition of B)

1

1ag * | xB(TH'
0

CE+ 2(1 +a 4 /2

0 4t (by lemma 2.8)

-N

CE 4201+ -oa:)dg (by lemma 2.7(c))

<+ 4a§ (by 4.2(b))
So by (4.3), (4.4), (4.5) and (4.2) we get

2 1.2 1.2

1.2 2 2 22 1 hl 1 2
ds < 2 de + €+ lzbzd. + azbzd.x + 4azbzd.b8 < 2 dB + le + Py dB - 2 d’ + 3¢
Thus
2
€ 6¢
%
Since dB > di-t1(1n,vl), by the arbitrariness of € the conclusion follows. 0

1 1
For any set A C A M let 1A : A+ A M denote the natural embedding and let
k 1
1; Al H (A M + Hk(A) induced homomorphism. let Q be the set defined in Theorea
’
3.2. Then for every k € Q we sget

k _ 1.
(4.6) r {pAen nuk'A t0)

Theorem 4.3 If n,(H) = 0, for every k € Q, the number

€ = infk sup £(v)
A€l yea

is well defined and it is a critical value of f. Moreover,

(4.7) lim c = 4=

keQ
kot

Proof. 1In order to prove the first part of the theorem, it is sufficient to apply Theorem

4.2 with X = A‘H. {A‘H,t) satisfies P.S. by lemma 4.3. By corollary 3.3 it follows
that the sets Fk(k @ N) are not empty and contain compact sets (in fact they contain the

support of k-chains which are not homologous to a constant). Then the assumption (a) of
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Theorem 4.2 is satisfied. By virtue of lemma 2.4, ¢ is bounded from below on A‘H. Then

assumption (b) follows. Assumption (c) follows from the fact that n induces a

isomorphism n* which makes the following diagram to commute:

LT
- *
1k,t\ 1k,n(A)
»
) n H*(n(a))

-1
3 - * . 4 20 iw + 0. .
So 1k.n(A) (n*) ik,A if and only if XA 0. So, by Theorem 4.2, the first

part of Theorem 4.3 follows. In order to prove (4.7), we fix k@ Q, € > 0 and we take

Ae Tk such that

sup f(n) < ¢

+ e
k
YEA

Por Y € i, by lemma 2.4, it follows that

B(Y) € azf(Y) + b2 = az(ck + €) + b2

i
So, setting c = az(ck + €) + bz, we have that A L, Ec where E. 1is defined by

(3.1). Then we obtain the following commutative diagram

[ ]

i-

TN L SR o 3
13 / it
(e )

[+

- 2 i* # 0.
Ak 0; then 1

Therefore Hk(tc) # 0, Then by Corollary 3.5 it follows that

1 -
where 12 i !c + AM is the embedding. Since A e l‘k, i

x<dmn(-‘{-§+ 1)
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Then by the definition of ¢, we obtain that

2
2
c_ ? — p - M (M is a positive constant).

(dim H)z
This proves (4.7). a

Proof of Theorem 0.1. (a) A connected component of AM corresponds to every conjugacy

class a of l'(H) and by virtue of Theorem 3.1, a connected component C(a) of A‘H.
Define
L inf  £(Y)
Yec(a)
Since {A‘H,t} satisfy P.S., then cc ie a minimum and, of course, it is a critical value
of f. Moreover, if a # a', the critical points of f are distinct since they belong to
different connected components.
(b) I1f “(H) = 0, then the conclusion follows by Theorem 4.3.
Otherwise consider the universal covering space ; —'> M. Since I1H is finite, ; is
compact. Let L(t) = L(t) * T for every t € (0,1]. Then M and L(t) satisfy the

assumptions of Theorem 4.3. Therefore there are infinitely many periodic orbit

; of i(t). Clearly ';

X is a periodic orbit of L(t), and by its construction it is

k
homotopically trivial. [m]
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